

Helmond/Netherlands, 7 – 8 November 2012

Cyclist Protection from the Perspective of the European Car Manufacturers

Dr. Abayomi OTUBUSHIN / BMW AG Thomas KINSKY / Adam Opel AG Johann STOLL / Audi AG Raimondo SFERCO / Ford Werke GmbH (on behalf of the ACEA)

- Who We Are
- Cyclist Accident Trends
- The Effectiveness of Helmet Use
- Predicting the Potential Benefits for AEB Systems for Vulnerable Road Users

ACEA Key Data

BMW Group	DAF	DAIMLER	FIRT
Ford	GM	HYUNDRI	IVECO
JAGUAR C	PORSCHE	PSA PEUGEOT CITROËN	RENAULT
ΤΟΥΟΤΑ	VOLKSWAGEN	VOLVO	VOLVO

- 16 major international companies.
- 11.6 million direct and indirect jobs.
- € 26 billion in R&D spending, largest private investor.
- € 75 billion of net trade contribution.
- € 375.1 billion of tax revenues (EU15).

ACEA figures 2012

- Car-to-cyclist accident scenarios are comparable to those of car-topedestrian accidents: Cyclists who are struck by cars usually contact the same vehicle components and have similar injuries as pedestrians.
- However, kinematics also depend on the type of bicycle.

Accident Statistics for Cyclists

Figure 1: Cyclist fatality rates, 2008 and 1999 compared

Reference: DaCoTA 2010

Source: CARE Database / EC Date of query: February 2011

5

Good progress has already been achieved: According to EU 7th framework project DaCoTA (Road safety Data Collection, Transfer and Analysis), the number of fatalities decreased in the decade from 1999 to 2008 by 29 %.

Comparison of Cyclist Fatalities

COUNTRY	Cyclists	Pedestrians
Australia	31	195
Austria	39	101
Czech Republic	84	176
Denmark	25	52
Finland	20	30
France	162	496
Germany	462	591
Great Britain	104	500
Greece	15	202
Hungary	103	186
Ireland	7	40
Israel	15	105
Italy	295	667
Japan	933	2012
Luxemburg	2	12
Netherlands	138	63
New Zealand	8	31
Northern Ireland	0	24
Norway	9	25
Poland	371	1467
Portugal	29	148
Slovenia	18	24
South Korea	333	2137
Spain	56	470
Sweden	20	44
Switzerland	54	60
United Kingdom	104	524
United States of	630	4092
America		

- The Netherlands is the only country with a higher number of cyclists fatalities (138) than pedestrians (63).
- A deeper analysis of the Reference: 2009 figures according to IRTAD Report 2010 accident situation seems necessary for the understanding of the NL figures compared with data from other countries, e.g. trend just for accidents with passenger vehicles, comparison with usage of bicycles (km/year), infrastructure, drivers' behaviour, accident types...

Long Term Accident Trends in the Netherlands

The trend for moderately to fatally injured cyclists in accidents without a motor vehicle involved should be a cause for alarm.

Dr. Otubushin/Kinsky/Stoll/Sferco (on behalf of ACEA), International Cyclist Safety Conference 2012, 7 – 8 Nov. 2012

7

Current Trends in Germany

- Absolute numbers as well as ratios to exposure (km driven) decline strongly.
- VRU fatalities follow the general declining trend (all fatalities: -66%; cyclists: -60%; pedestrians: -73% compared to 1992).

Cyclist Accidents: How to Further Decrease Injury Risks?

head/face injuries	AIS1+	AIS2+	AIS3+	[
window frame / A-pillar	43,3	28,9	15,8	
windscreen	131,5	74,4	21,9	1
bonnet	12,2	6,6		
bonnet leading edge	0,5	0,5		
fender	3,9	1,6		
grill and headlamps				
bumper				
other veh. parts / front nfs. *	23,4	9,5	2,9	
own bicycle / other / unknown **	10,4	0,5		
ground impact	378,9	159,9	25,0	
total	604,1	281,9	65,6	
injuries on lower extremities	AIS1+	AIS2+	AI53+	
window frame / A-pillar	1,4	0,5		
windscreen	6,5	1,7		
bonnet	22,7	5,9	1,1	
bonnet leading edge	25,8	9,8	3,7	l
fender	27,0	8,6	0,9	l
grill and headlamps	8,1	3,9	0,5	l
bumper	118,3	70,7	14,1	l
other veh. parts / front nfs. *	34,8	12,1	3,1	l
own bicycle / other / unknown **	38,5	10,7		l
ground impact	210,1	49,8	7,9	
total	493,1	173,8	31,3	
thorax injuries	AIS1+	AIS2+	AIS3+	
window frame / A-pillar	8,8	6,4	3,3	Ì
windscreen	20,1	10,3	7,4	
bonnet	24,2	8,6	5,4	
bonnet leading edge	4,1	4,1	0,6	l
fender	2,9	1,5	1,5	
grill and headlamps				Ļ
bumper				l
other veh. parts / front nfs. *	5,7	2,1	1,6	Ļ
own bicycle / other / unknown **	6,5			
ground impact	40,6	12,1	9,0	
total	112.9	45.1	28.8	

•	Head injuries represent the majority
	of severe injuries for cyclists in
	accidents with cars, the most
	dangerous contact surface for the
	head is the ground.

• Wearing helmets can help to further decrease the injury risks.

A First Step

- Vehicles designed to meet pedestrian safety requirements also contribute to cyclists' safety.
- However, not all injuries can be effectively addressed by vehicle design.
- Cyclists are also required to share the responsibility:

Effectiveness of Helmet Use

Distribution of Maximum AIS (AIS 2005) for head injuries

- According to GIDAS data, the helmet wearing rate is < 10 % in Germany.
- However, cyclists wearing helmets did not suffer any AIS4+ head injuries during accidents (in contradiction to those not wearing helmets) and wearing a helmet significantly reduces the risk of AIS 2 - 6 injuries.

Predicting the Potential Benefits of AEB Systems for VRU's

GIDAS Analysis Pedestrians

Frontal pedestrian accidents MAIS 2+: Summary of initial conflicts

Longitudinal 3 %

Turning/crossing 7 %

• Main scenario for pedestrian accidents are crossing accidents.

Predicting the Potential Benefits of AEB Systems for VRU's

RF 08

GIDAS Analysis Cyclists

Cyclist accidents MAIS 2+: Summary of initial conflicts

Longitudinal 8 %

> Turning right 7 %

Turning left 11 %

• Main scenario for cyclist accidents are also crossing accidents.

Analyses of Pedestrians and Cyclists: Reference Scenarios

• Stochastic simulation of initial conditions to generate millions of accidents.

Analyses of Pedestrians and Cyclists: Simulation Models

Simulation Process

Comparison of Results for Pedestrians and Cyclists

(1) Nearly all pedestrian cases in sensor field of view.

- (1) Nearly all critical cyclist cases in sensor field of view.
- (2) Compared to pedestrians, more cyclists out of sensor field of view, but lower collision speed in these cases.
- (3) Accidents with higher collision speeds can be predicted for cyclists due to their lower agility caused by their own dynamic behaviour.

Detailed Analysis: Crossing Cyclists from Right

R1_01 RF from right

- v_{car}: 5 65 km/h, v_{cyclist}: 5 20 km/h, frontal collision.
- Highest proportion of GIDAS cases.

Preventive Cyclist Protection

Example Accident

Simulations of a real-world reconstructed accident: crossing cyclist collision with a vehicle without and with forward-looking AEB system.

Benefit for cyclists: case study

- Example accident: car vs. cyclist;
- Reconstruction by AARU (AUDI Accident Research Unit).

Example Accident

• Virtual reconstruction with preventive AEB system.

Example Accident

• Original accident.

 Accident with preventive system.

- A deeper understanding of cyclist behaviour is required if the trend of single cyclist collisions is to be reversed.
- Vehicles designed to meet the pedestrian safety requirements also contribute to cyclist safety.
- However, not all injuries can be effectively addressed by the vehicle design. Cyclists are also required to share the responsibility by wearing helmets.
- Future AEB systems designed for pedestrians potentially offer additional benefits for cyclists as well.

Thank you for your attention!

Literature

- DaCoTA (Road Safety Data Collection, Transfer and Analysis) 2010: Traffic Safety Basic Facts 2010, Cyclists; available at the website dacotapilot.swov.nl/Statistics/Basic%20fact%20sheets/BFS2010_DaCoTA-SWOV-1-3-Cyclists_SWOV20110223.pdf [26.10.2012]
- Helmer/Kates 2012: Helmer, Th. (BMW); Kates, R. (REK Consulting): Accidents with vulnerable road users in Germany: Current trends and characteristics of vehicle-cyclist accidents; 19th ITS [Intelligent Transport Systems] World Congress, Vienna/Austria, 22 – 26 October 2012
- **IRTAD 2010**: International Traffic Safety Data Analysis Group: IRTAD Annual Report 2010, available at the website internationaltransportforum.org/irtadpublic/pdf/10IrtadReport.pdf [26.10.2012]
- Liers 2011: Liers, H. (VUFO): Analyse des Unfallgeschehens zwischen PKW und Fahrrädern im Hinblick auf passive Schutzmaßnahmen [Analysis of the accident events between passenger cars and cyclists with regard to passive protection measures]; 6th Praxis Conference Pedestrian Protection 2011, Bergisch Gladbach, 29 30 June 2011
- Otte/MHH 2012: Otte, D. (Medical School Hannover): Pedestrian and Cyclist Real World Crash Data, challenges for data collection for the future; Workshop on Pedestrians and Cyclists during the 2012 Conference of the International Research Council on Biomechanics of Injury (IRCOBI), Dublin, 11 September 2012
- **Statistisches Bundesamt 2011**: Statistisches Bundesamt der Bundesrepublik Deutschland (German Federal Statistical Office): Verkehrsunfälle Zeitreihen 2010; Wiesbaden 2011
- **SWOV Cyclists 2009**: Stichting Wetenschappelijk Onderzoek Verkeersveiligheid (SVOW; Dutch Institute for Road Safety Research): Fact sheet Cyclists, July 2009; available at the website www.swov.nl/rapport/Factsheets/UK/FS_Cyclists.pdf [26.10.2012]
- Expertenkommission 2011: Fahrradhelme wirkungsvoller Schutz vor Kopfverletzungen [Cylcists helmets effective protection from head injuries]; Abschlussbericht der vom Thüringer Ministerium für Bau, Landesentwicklung und Verkehr einberufenen Expertenkommission [Final report of the experts' commission called by the Ministery of Building, Rural Development and Traffic of Thuringia], April 2011; available at the website www.verkehrswacht-bruchsal-bretten.de/dokumente/Abschlussbericht_Expertenkommission_Fahrradhelm.pdf [26.10.2012]